Intro to R and RStudio

Strauss Health Sciences Library

June 22, 2021

Note: This is material adapted largely from Software Carpentry and Data Carpentry lessons as well as from
material from Tobin Magle. We’re always on the lookout for more relevant and directly applicable datasets
and use cases for the demonstrations, so feel free to contact us if you have any. ..

Learning Objectives
After completing this tutorial you will be:

e Familiar with the RStudio interface and documentation
e Familiar with core aspects of the base R syntax

e Able to load tabular data into R

e Able to calculate summary statistics for tabular data

e Able to create a publication-quality graph

Preflight

If you haven’t already, install R and RStudio on your computer:

Instructions for installing R: https://cran.r-project.org

Instructions for installing RStudio: https://www.rstudio.com/products/rstudio/download/#download
You may also download the toy datasets we’ll be working with:

E.Coli strains data: https://osf.io/ga9re/

Inflammation data: https://osf.io/c6r3d/

Note where these two data sets end up in your filesystem

What is R?

R is a programming language originally designed for statistical computing. It has grown into a general
scientific computing platform thanks largely to it being Open Source and to the gargantuan number of
extensions available for it. Just about any feature you would like in a scientific computing environment likely
has been implemented and is continuously being improved. (e.g. the Bioconductor package for genomics,
the RISmed package for interacting with NCBI databases, and the RQDA package for Qualitative Data
Analysis).


https://cran.r-project.org
https://www.rstudio.com/products/rstudio/download/#download
https://osf.io/ga9re/
https://osf.io/c6r3d/

What is RStudio?

RStudio makes programming in R easier. RStudio is an IDE (Integrated Development Environment) for R
that includes all relevant documentation and syntax checking at the ready as well as tools for quick data

exploration and document preparation.

e Edt View Project Wodspate Piots Tock  Help

] damontiriong B | D] formatfioth x prevey ]| Werkpace  Hstory -
) Clsaucesnsoe G £ - #fen | S| [#%un v | et | 5 Saere | (S impen Ontaete | f Gear
1 Tdbraryiggplon? - Dats
z di amondss 53340 obs, of 10 variables
3 wiew(diamands) _——
| 4 summary(diamonds) —
5 avesize 0. 7979

& summary(diamondssprice

2711~ Code Edito 3- Workspace and
,, History

12 =
13 mafn-"oiascnd Pricing”
14

Thes Poh Padages  Hep -

2 Fieem Bppers Q) f Oean

oot =0 Diamond Pricing

x ¥ z 3 N
Min. ;0000 Min.  : 0.000 Min. 0,000 ry SRR
150 Gt 4,700 13T Qo0 4720 15T Qu.! 2010 ‘.

median © 5,700 Median : 5710 Median © 3330

e s 4 - Plots and files

U1 Tapiend ¢

ard

= 1 2- R Console |+

= su

128 950 2401 031 I 18820
= avesize <- round(mean(diamondsScarat), 4)
> elardty <- Tevels{diasondsiclarity)
» p <= gplotcarat, price,
datam=diznonds, coloreclarity,
xlabe="Carat”, ylab="price”,
mafn="plamond pricing™)

= format.plot(plot-p, size=23)

C@la.l

Figure 1: Default RStudio Interface

RStudio can also be a tool for reproducible research. That is, we can use RStudio as a sort of laboratory
notebook in case we forget where we put things or how we did things, something that is very helpful given

the sprawling capabilities of the R platform.

Getting Started

Set your working directory

To make things easier, it helps to have your code and data files together. First, choose a folder as your

working directory:
Option 1: - Go to the Session menu - Select Set Working Directory - Select Choose Directory and

navigate to where your files are

Option 2: - Use the More pull-down menu in the Files pane

Option 3: - Use the setwd() and getwd() commands in the console

Open a Script file
We will do most of our work today on the R console. However, we could also save our code as a script. To

open a new script:

¢ Go to the File menu
¢ Select New File
e Select R Script

Now save the script to where you want to work. And remember to Always Be Saving.



Basic Operations

R sees the world in terms of vectors and tables. However, this doesn’t preclude us to use it as a simple
scientific calculator

chunk 1

sqrt(3.5)
print(sqrt(3.5), 20)

To assign values to variables, we use R’s own assignment operator:

chunk 2

x <- 2 # Assigns 2 to z; really = 7s a I1-element wvector now
# To find out the walue or content of a variable or object, we just input its name
X

Fun thing to check: the assignment operator is meant to evoke an arrow. Does it work in both directions?
Can you conceive of reasons or cases where it may be preferable to choose one direction versus the other
while writing code?

Since R thinks in terms of vectors and tables, it is straightforward to perform vectorized calculations. Loops
are also supported (see cheatsheet) but it is good practice to take advantage of vectorization when possible.

chunk 3

x <- ¢(1,2,3,4,5,6) #Creates vector; ‘¢’ stands for ‘concatenate’
y <- x72

z <- 100:140 #Also easy to create range vectors

jenny <- ¢(8,6,7,5,3,0,9)

(jenny *3)

Quick exercise, can you tell what b will be?
chunk 4

a <- c(1,2,3,4)
b <- exp(log(a))

R is full of more sophisticated functions, but you can also define your own:

chunk 5b
middle <- function(a,b) {
# Dumb function that gives the average of two numbers

return((a+b)/2)
}

# Let's try it
middle(20,40)

Quick exercise: code a function to convert temperatures from Fahrenheit to Kelvin



Disgression: R also has the basic control structures you’d expect from a more “imperative”
language. See the “Programming” section of the Base R handout sheet.

Accessing help

We can get quick access to the documentation by prefixing command names or concepts with question marks.
Example 1: T forgot the syntax for some commands
chunk 6

?mean #gets documentation about the mean function
?plot #gets documentation about the plot funciion

In what follows, feel free to type into the console the commands above and run them instantly or, as intended,
type them as part of the script you are saving. Then select the lines you want to run and press the Run
button in RStudio. Use # to write comments and notes liberally in your script.

Example 2: How do I find documentation on regression in R?

Let’s start playing with our datasets

You should have ecolidata.csv in your working directory.
Note that we could have downloaded it directly from RStudio with the following command:

chunk 8

download.file( "https://osf.io/ga9re/download", "ecolidata.csv")

We could have also imported an actual Excel file with the readxl or a SAS file with the haven package,
we’ll talk about that in a bit. ..

Before we explore our data, we need to import the csv file into an R table or Data Frame:

chunk 9

straindata <- read.csv("ecolidata.csv'")

Data frame is a special R table format, e.g. distinct from a matrix: - Each column a variable - Each row an
observation - Each row in a column is of the same data type - Columns can be of different data type - Data
set is rectangular

Try exploring the imported data from the Environment pane (View) or with R commands:
chunk 10
str(straindata) # tells you data types

head(straindata)
class(straindata)

A data frame is a collection of vectors (columns) of identical lengths

chunk 11



dim(straindata)
nrow(straindata)
ncol(straindata)
summary (straindata)

Indexing and subsetting

chunk 12

straindatal1,2] # First element of second column
straindatal1:3, 7] # First 3 elements of 7th column
straindatal3,] # third element of everycolumn
straindatal,7] # the seventh column

Adressing by column name

chunk 13

straindata$generation # The "generation column"

Creating new objects from existing ones

chunk 14

sizematrix <- cbind(straindatal,1],straindatal,7]) # makes a table from columns

rowmatrix <- rbind(straindatal5,],straindatal[8,]) # makes a table from rows

sample_size <- data.frame(straindata$sample, straindata$genome_size) # another way of making a table fr

write.csv(sample_size, "sample_size")

Logical Operations

chunk 15

sample_check <- read.csv("sample_size")
AreTheyTheSame <- sample_size == sample_check
(AreTheyTheSame)

Filtering data

chunk 16

FirstFive <- sample_size$straindata.genome_size[1:5]
(FirstFive)

biggergenomes <- subset(straindata, genome_size > 4.7)



Basic Plotting

Let’s make some plots of this bacterial strains data:

chunk 17

plot(straindata$genome_size) #Scatterplot

We have some options in dictating presentation, of course:

chunk 18
plot(straindata$genome_size, "Scatter Plot of Genome Sizes")
plot(straindata$genome_size, "Scatter Plot of Genome Sizes",

Some other plots:

chunk 19
plot(straindata$generation, straindata$genome_size)
hist(straindata$genome_size) # Histogram

boxplot(straindata$genome_size ~ straindata$cit) # Boz Plot
boxplot (genome_size ~ cit, straindata)

"Genome Size (Mb)")

boxplot (genome_size ~ cit, straindata, c("pink", "purple", "darkgrey"),

"Average Expresion Differences", "Genome Size")

Let’s move now to that Inflammation data

Similar to the previous dataset, you should have inflammation.csv in your working directory or:

chunk 20

download.file( "https://osf.io/c6r3d/download", "inflammation.csv")

Quick import and exploration:

chunk 21

inflammation <- read.csv("inflammation.csv") # reads data from the csv file

head(inflammation)
str(inflammation)
summary (inflammation)

Subsetting Columns

chunk 22

day10inf <- inflammation$dayl0
mean(day10inf)



Subsetting Rows

chunk 23
males <- subset(inflammation, gender =="M")
females <- subset(inflammation, gender =="F'")

Basic stats
chunk 24

t.test(females$dayl0, males$day10)

Plot a Histogram

chunk 25

hist(inflammation$day30, "Day 30 Inflammation", "Inflammation Level",
"Frequency", "blue")

Bar Plot

chunk 26b

daymeans <- apply(inflammation[,3:32], 2, mean)

barplot( daymeans, "Mean Inflammation Over Time", "Days Post-Vaccine",

"Mean Inflammation")

Quick exercise: how to modify the code above to make a barplot of the median inflammation instead?

Some other Basic Plots
chunk 27

boxplot (inflammation$day21 ~ inflammation$gender, "Day 21 Inflammation by Gender",
"Gender")

plot(inflammation$day10)

plot(inflammation$day10, "Patient ID", "Inflammation",
inflammation$gender, 16)

plot(inflammation$day10, inflammation$gender, 16)

legend (x=3, 5, levels(inflammation$gender), c(1:2), 16)



Further Steps
Packages

Packages are a powerful way to expand the functionality of your R install.

This will download the readxl package from the archives:

install.packages("readxl")

Once installed, the functions in readxl are available to you provided you declare that you want to use the
installed package from a script or from the console with:

library(readxl)

Helpful Links:

o Swirl http://swirlstats.com/students.html
o Learnr Tutorials (see Tutorial tab on upper-right panel of RStudio)

o R base graphics: an Idiot’s guide https://rpubs.com/SusanEJohnston /7953
For some more recommended introductory tutorials:

o Kelly Black’s R Tutorial http://cyclismo.org/tutorial/R/index.html

o Software Carpentry R Programming Lesson http://swcarpentry.github.io/r-novice-inflammation/

Some of the best books to learn R and RStudio are free:

Hands-On Programming with R (https://rstudio-education.github.io/hopr/) “This book will teach you
how to program in R, with hands-on examples. I wrote it for non-programmers to provide a friendly intro-
duction to the R language. You’ll learn how to load data, assemble and disassemble data objects, navigate
R’s environment system, write your own functions, and use all of R’s programming tools. Throughout the
book, you’ll use your newfound skills to solve practical data science problems.”

Once you are a bit familiar with R and RStudio you can dive into the most useful data science packages by
going through this more advanced book:

R for Data Science (https://r4ds.had.co.nz) “This book will teach you how to do data science with R:
You’ll learn how to get your data into R, get it into the most useful structure, transform it, visualise it and
model it. In this book, you will find a practicum of skills for data science.”...“You’ll learn how to use the
grammar of graphics, literate programming, and reproducible research to save time. You’ll also learn how
to manage cognitive resources to facilitate discoveries when wrangling, visualising, and exploring data.”

Other web resources:

o RStudio downloadable cheatsheets: https://www.rstudio.com/resources/cheatsheets/
 Videos from rstudio https://rstudio.com/resources/webinars/

o R blog aggregator: https://www.r-bloggers.com/

o A curated list of the better R packages: https://github.com/qinwf/awesome-R


http://swirlstats.com/students.html
https://rpubs.com/SusanEJohnston/7953
http://cyclismo.org/tutorial/R/index.html
http://swcarpentry.github.io/r-novice-inflammation/
https://rstudio-education.github.io/hopr/
https://r4ds.had.co.nz
https://www.rstudio.com/resources/cheatsheets/
https://rstudio.com/resources/webinars/
https://www.r-bloggers.com/
https://github.com/qinwf/awesome-R

	Learning Objectives
	After completing this tutorial you will be:

	Preflight
	What is R?
	What is RStudio?
	Getting Started
	Set your working directory
	Open a Script file

	Basic Operations
	Disgression: R also has the basic control structures you'd expect from a more ``imperative'' language. See the ``Programming'' section of the Base R handout sheet.

	Accessing help
	Let's start playing with our datasets
	Indexing and subsetting
	Adressing by column name
	Creating new objects from existing ones
	Logical Operations
	Filtering data

	Basic Plotting
	Let's move now to that Inflammation data
	Subsetting Columns
	Subsetting Rows
	Basic stats
	Plot a Histogram
	Bar Plot
	Some other Basic Plots

	Further Steps
	Packages
	Helpful Links:


